Плоская арифметическая спиральная антенна. Самодельная спиральная антенна для эфирного цифрового телевидения Самодельная спиральная тв антенна

Плоская арифметическая спиральная антенна. Самодельная спиральная антенна для эфирного цифрового телевидения Самодельная спиральная тв антенна

Введение

Современное состояние техники связи радиодиапазона нельзя представить без спиральных антенн. Этот тип антенных систем используется благодаря своим характерным качеством: широкополосность, эллиптическая поляризация поля при малых габаритах и простой конструкции.

Спиральные антенны используются как самостоятельно, так и в качестве элементов антенной решётки, облучателя, например, зеркальной антенны, что к преимуществам спиральных антенн прибавляет и направленность.

Благодаря свойству эллиптической поляризации спиральные антенны нашли применение в техники космической связи, поскольку, в ряде случаев поляризация принимаемого сигнала может быть случайной, например, от объектов, положение которых в пространстве изменяется или может быть произвольным (эти объекты могут быть: самолёты, ракеты, спутники и т.д.)

В радиолокации антенны с вращающейся поляризацией позволяют уменьшить помехи создаваемые отражениями от осадков и от поверхности Земли, обусловленные тем, что направление вектора напряжённости электрического поля изменяется на обратное.

Поле с вращающейся поляризацией может применяться также при работе одной и той же антенны на передачу и приёма для увеличения развязки между каналами (при этом излучаемые и принимаемые поля должны иметь противоположное направление вращение).

В настоящие время спиральные антенны широко применяются в качестве антенн устройств личной связи. Значительная доля сотовых телефонов, транковых аппаратов, и мобильных радиостанций содержат в своей конструкции спиральные антенны, работающие в режиме перпендикулярной оси излучения.

В настоящие время я собираюсь исследовать диаграммы направленности плоских спиральных и цилиндрических СА, проанализировать их зависимость от длинны, проследить изменение направленности при изменении параметров антенны. Так же сравнить характеристики СА между собой и с другими типами антенн.

В начале каждого раздела берется определенный тип СА. И дальше будут идти результаты компьютерного анализа для разных режимов и типов. Все расчеты и построения графиков будут проведены в программе МаthCAD 2001i.

Предполагается включение в приложения программ простейшего расчета характеристик спиральной антенны.

Особенностью теории СА является сложность расчета поля антенны.

Из различных конструкций диапазонных антенн эллиптической поляризации наибольшее применение получила спиральная антенна, предложенная Краусом в 1947 году, и ее различные модификации.

Чтобы иметь возможность производить расчет перечисленных характеристик и параметров СА в широком интервале частот, необходимо установить зависимость фазовых скоростей волн тока, распространяющихся вдоль провода в спирали от геометрии и частоты возбуждающего спираль напряжения.

Расчетам фазовой скорости волны тока, распространяющейсявдоль провода спирали, и установлению зависимости фазовых скоростей от геометрии и частоты возбуждающего спираль напряжения, посвящено много работ, первая попытка решения этой задачи принадлежит Поклингтону, который еще в 1897 году, решив задачу об определении фазовой скорости электромагнитной волны, распространяющейся вдоль прямого провода и вдоль кольца, пытался рассмотреть вопрос о распространении электромагнитной волны вдоль спирали. Это удалось ему сделать в ряде частных случаев. Если не считать отдельных работ в этом направлении, связанных с распространением электромагнитной волны в катушках интерес к этой теме возник в конце 40-х годов в связи с широким применением спиралей в качестве замедляющих структур.


Глава 1. Типы спиральных антенн

1.1 Типы спиральных антенн

Среди различных типов широкополосных антенн важное место занимают разнообразные спиральные антенны. Спиральные антенны являются слабо- и средненаправленными широкополосными антеннами эллиптической и управляемой поляризации. Они применяются в качестве самостоятельных антенн, возбудителей волноводно-рупорных антенн эллиптической и управляемой поляризации, элементов антенных решеток.

Спиральные антенны – это антенны поверхностных волн. По виду направителя (замедляющей системы) и способу обеспечения работы в широком диапазоне частот их можно разделить на:

· цилиндрические регулярные, у которых геометрические параметры (шаг, радиус, диаметр провода) постоянны по всей длине и широкополосность обусловлена наличием дисперсии фазовой скорости;

· эквиугольные или частотно-независимые (конические, плоские);

· нерегулярные, к которым можно отнести все другие типы спиральных антенн.


Рис.1.1. 3 Нерегулярные спиральные антенны:

а – плоская с постоянным шагом намотки (архимедова);

б – коническая с постоянным шагом намотки;

в – на поверхности эллипсоида вращения с постоянным углом намотки.


Рис.1.1.4 Нерегулярная цилиндрическая спиральная антенна (с переменным шагом)

По числу заходов (ветвей) и способу их намотки спиральные антенны могут быть одно- и многозаходные с односторонней или двусторонней (встречной) намотки.

Отсутствие или наличие дополнительного замедления фазовой скорости и способ его реализации позволяют разделить спиральные антенны на следующие типы:

· из гладкого провода в однородном диэлектрике (воздухе),

· из провода, обладающего собственным замедлением (импедансные спиральные антенны),

· из провода с собственным замедлением и с диэлектриком (импедансные спирально-диэлектрические антенны).


Рис. 1.1.5 Спиральные антенны с дополнительным замедлением:

а – импедансная;

б,в – спирально-диэлектрическая;

г – импедансная спирально-диэлектрическая.

Одним из основных свойств спиральных антенн является их способность работать в широкой полосе частот с коэффициентом перекрытия от 1.5 до 10 и более. Все спиральные антенны – это антенны бегущей волны, но одно обстоятельство само по себе не обуславливает работы спиральных антенн в диапазоне частот с таким коэффициентом перекрытия.

Работа однозаходных регулярных цилиндрических спиральных антенн и их модификаций в диапазоне частот возможна благодаря их дисперсионным свойствам, вследствие которых в широком диапазоне частот фазовая скорость поля вдоль оси спирали близка к скорости света, отражение от свободного конца спирали мало, длина волны в проводе спирали примерно равна длине витка.

В многозаходных цилиндрических спиральных антеннах рабочий диапазон дополнительно расширяется вследствие подавления в них ближайших низших и высших типов волн, искажающих диаграмму направленности основного типа.

Спиральные антенны с односторонней намоткой излучают поле с эллиптической, близкой к круговой, поляризацией. Направление вращения вектора поля соответствует направлению намотки спирали. Для получения линейной и управляемой поляризации используют спиральные антенны с двусторонней (встречной) намоткой.

Рис.1.1.6. Эквиугольные спиральные антенны с двусторонней (встречной) намоткой: а – коническая четырехзаходная; б – плоская трехзаходная.

Форма частотно-независимых (плоских и конических эквиугольных) спиральных антенн определяется только углами. Каждой длине волны в пределах рабочего диапазона соответствует излучающий участок неизменной формы и постоянных электрических размеров. Поэтому ширина диаграммы направленности и входного сопротивления приближенно остаются постоянными в весьма широких диапазонах частот (10:1 ...20:1).

Для получения однонаправленного излучения с эллиптической поляризацией в меньших диапазонах частот (2:1 ... 4:1) нет необходимости строго выдерживать форму антенны в соответствии с условием частотной независимости. Если при переходе от одной длины волны к другой форма и электрические размеры излучающего элемента повторяются хотя бы приближенно, антенна работает в диапазоне частот с меньшим постоянством характеристик и параметров. Следуя этому, можно построить очень широкое, не подчиняющееся точно принципу частотной независимости семейство антенн в виде одно- или многозаходных спиралей, навитых (по различным законам намотки) на различных поверхностях вращения. Иногда такие антенны называют квазичастотно-независимыми.

Квазичастотно-независимые спиральные антенны для получения управляемой и линейной поляризации также выполняются с двусторонней намоткой. Для получения управляемой, линейной и круговой поляризации могут также применяться различные (цилиндрические, эквиугольные и др.) двухзаходные спиральные антенны.

Рис.1.1.7. Квазичастотно-независимые спиральные антенны с двусторонней (встречной) намоткой и постоянным шагом: а – коническая четырехзаходная; б – полусферическая четырехзаходная; в – эллипсоидная четырехзаходная.


В окружающем нас мире часто очень важным оказывается тот факт, что человек не может обойтись без большого количества необходимой и своевременной информации. Эта информация может носить как мирный так и военный характер, но она предназначена прежде всего для облегчения деятельности человека.

Одной из разновидностью устройств служащих для приема и передачи информации являются антенны.

В данной курсовой работе будут рассмотрены вопросы расчета антенны, удовлетворяющей поставленным техническим требованиям.

2. Цель работы

Целью работы является изучение спиральной антенны ДЦМВ диапазона, что подразумевает собой расчет геометрических размеров антенны, ее характеристик излучения.

3. Краткий обзор спиральных антенн

Спиральные антенны относятся к классу антенн бегущей волны. Они представляют собой металлическую спираль, питаемую коаксиальной линией. Имеется довольно много разновидностей спиральных антенн, однако почти все можно свести к следующим трем типам:

а) цилиндрическая (см. рисунок 3.1) ;

б) коническая (см. рисунок 3.2) ;

в) плоская (см. рисунок 3.3).

Рисунок 3.1 - Цилиндрическая антенна.

Рисунок 3.2 - Коническая антенна.

Рисунок 3.3 - Плоская антенна.

В зависимости от числа ветвей спирали, они могут быть однозаходные (одна ветвь), двухзаходные (две ветви) и т.д.

Принцип действия спиральных антенн

Спиральная антенна (рис. 4.1) состоит из проволочной спирали , питаемой коаксиальной линией. Внутренний провод этой линии присоединяется к спирали, а наружная оболочка - к металлическому диску.

Спиральные антенны формируют диаграмму направленности, состоящую из двух лепестков, расположенных вдоль оси спирали по разные стороны от нее. На практике обычно требуется одностороннее излучение, которое получают, помещая перед экраном (диском). Кроме того диск спиральной антенны служит для уменьшения токов на наружной оболочке коаксиальной линии, уменьшения колебаний входного сопротивления в рабочем. Диаметр диска выбирается порядка (0.8-1.5)l, где l - длина спирали. Диск не обязательно выполнять из сплошного листа, его можно изготовить из системы радиальных и круговых проводов.

4. Основа работы цилиндрической спиральной антенны

Подробные исследования показали, что на излучающей цилиндрической спирали одновременно существует несколько типов тока, отличающихся друг от друга амплитудой и числом периодов, укладывающихся вдоль оси спирали со своим затуханием и со своей фазовой скоростью. Однако форма диаграммы направленности спирали зависит, в основном, лишь от одной, преобладающей волны, тип которой определяется соотношением между длиной витка спирали и рабочей длиной волны.

Введем следующие обозначения:

Рабочая длина волны в свободном пространстве;

Т q - волна тока в спирали q-го типа; q=0,1,2…. Целое число, указывающее, сколько периодов волны тока укладывается вдоль одного витка спирали;

V q - скорость распространения волны тока Т q по проводу спирали;

С - скорость света в свободном пространстве;

D - диаметр витка цилиндрической спирали.

Известно три режима работы цилиндрической спиральной антенны:

Когда длина витка спирали меньше 0.65 (при этом длина волны >5D), на ней преобладает волна Т 0 , характеризующаяся изменением фазы тока в пределах 360 0 на протяжении нескольких витков. Волна Т 0 от конца спирали приводит к образованию стоячих волн, которые и формируют диаграмму направленности антенны. Волна Т 1 имеет весьма малую амплитуду и в излучении не участвует. Максимальное излучение для этого случая получается в плоскости, перпендикулярной оси спирали(рис 4.2а) и в этой плоскости оно не направлено.

Если длина витка лежит в пределах от 0.75-1.3 (длина волны соответственно =4D-2.2D), на ней преобладает волна Т 1 , фазовая скорость которой меньше скорости света V 1 0.82 C. Волна Т 1 интенсивно излучается всеми витками, поэтому в спирали устанавливается бегущая волна тока, формирующая максимум излучения вдоль оси спирали (рис 4.2 б). Имеющаяся также на спирали волна Т 0 быстро затухает по длине спирали и ее вклад в диаграмму направленности невелик.

Режим осевого излучения является основным, наиболее используемым режимом для работы спиральных антенн, поэтому волна Т 1 , являющаяся преобладающей, когда длина провода витка спирали примерно равна рабочей длине волны, называется основной.

При длине витка спирали, большей 1.5 (в этом случай <2D), на цилиндрической спирали помимо основного типа волны Т 1 возникают волны Т 2 , Т 3 и т.д. Волна Т 1 становится затухающей, в то время как Т 2 имеет постоянную амплитуду и является определяющей в излучении. Максимальное излучение получается в направлениях, образующих острый угол относительно оси антенны, и пространственная диаграмма получается в форме конуса

Рисунок 4.1 - схема возбуждения спиральной антенны.

Рисунок 4.2 - спирали, имеющие разный диаметр, и соответствующие им диаграммы направленности.

5. Расчет параметров цилиндрической антенны

Параметрами цилиндрической спирали являются:

n - число витков спирали,

Угол подъема витка,

R - радиус спирали,

l - осевая длина спирали,

S - шаг спирали,

L - длина витка спирали.

Между указанными параметрами существуют следующие соотношения (см Рис 5.1):

Рисунок 5.1

Диаметр витков спирали и шаг намотки должны быть выбраны таким образом, чтобы каждый виток имел поляризацию, близкую к круговой, и максимальное излучение в направлении оси спирали (ось Z). Кроме того, нужно, чтобы напряженности полей, создаваемых отдельными витками в направлении оси Z, складывались в месте приема в фазе или с небольшим сдвигом фаз. В соответствии с теорией антенны бегущей волны максимальный коэффициент направленого действия получается в том случае, когда сдвиг фаз A1 между напряженностью поля, создаваемого первым (от источника) витком, и напряженностью поля, создаваемого последним витком, равен.

Для обеспечения круговой или близкой к ней поляризации поля, а также для обеспечения интенсивного излучения каждого витка в направлении оси Z нужно, чтобы длина витка была близкой к. Сказанное можно пояснить следующим образом. Предположим, что шаг витка бесконечно мал, тогда виток образует плоскую рамку. Как известно, в спиральной антенне КБВ получается близким к единице. Предположим поэтому, что в спиральной антенне имеет место режим бегущей волны. Предположим, кроме того, что скорость распространения тока по витку равна скорости света. При этом сдвиг фаз между током в начале и в конце витка равен.

В направлении оси Z составляющие векторов напряженностей поля Ex и Ey будут одинаковой величины.Сдвиг фаз между этими составляющими будет равняться /2. Последнее следует из того, что токи в элементах витка, ориентированных параллельно оси X, сдвинуты по фазе на /2 по отношению к фазе токов в элементах, ориентированных параллельно оси Y. Равенство величин Ex и Ey и сдвиг фаз между ними, равный /2, обеспечивает круговую поляризацию. При длине витка, равной, и скорости распространения тока вдоль провода, равной скорости света, обеспечивается также интенсивное излучение в направлении оси Z. Последнее может быть приближенно доказано следующим образом. Рассмотрим два произвольных элемента витка, расположенных симметрично относительно центра, например элементы 1 и 2 (рис. 5.2). Каждый из этих элементов имеет максимальное излучение в направлении оси Z. Векторы E, создаваемые этими элементами в направлении оси Z, паралллельны касательным к окружности в точках 1 и 2. Сдвиг фаз между токами в элементах 1 и 2 вследтвии режима бегущей волны равен. Кроме того, токи в этих элементах имеют противоположные направления, что эквивалентно дополнительному сдвигу фаз, равному. Таким образом, поля обоих элементов в направлении оси Z складываются в фазе. Нетрудно показать, что любые два симметрично расположенных элемента создают в направлении оси Z синфазные поля, что обеспечивает интенсивное излучение в этом направлении.

Приведенное здесь элементарное изложение принципа работы спиральной антенны не учитывает всей сложности происходящих в ней процессов и, в частности, то, что в действительности имеет место значительное отражение энергии от спирали. Кроме того, волна вдоль антенны распространяется как непосредственно вдоль провода, так и через пространственную связь между витками, что создает более сложную картину распределения тока.


Рисунок 5.2.

Для обеспечения круговой или близкой к ней поляризации поля, а также обеспечения интенсивного излучения каждого витка в направлении оси Z необходимо, чтобы длина витка была близкой к.

Шаг намотки и диаметр витка выбраны таким образом, что сдвиг фаз между напряженностями полей, создаваемых первым и последним элементами витка, то в направлении оси Z сохраняется круговая поляризация и максимальное излучение. Это будет иметь место при удовлетворении соотношения:

2????????????????

Сдвиг фаз между полями начального и конечного элементов витка, определяемый разностью хода лучей от этих элементов; - сдвиг фаз полей этих элементов, определяемый сдвигом фаз токов этих элементов.

Из вышеуказанного уравнения получаем соотношение между L и S, соответствующее круговой поляризации:

Если выбрать соотношение между S и L в соответствии с этой формулой, то сдвиг фаз между полями, создаваемыми в направлении Z соседними витками, также будет равняться 2. Таким образом поля всех витков антенны складываются в фазе, что обеспечивает максимальное излучение в направлении оси Z. Однако такой режим работы спиральной антенны не соответствует максимальному значению КНД. Максимальный КНД получается при сдвиге фаз между полями первого и второго витков, равном. Для этого нужно, чтобы:

где n - число витков спирали.

Из (5.3) находим соотношение между и S, соответствующее максимальному значению КНД:

При удовлетворении соотношения (5.4), однако, не получается чисто круговой поляризации, при этом несколько увеличивается уровень боковых лепестков. Коэффициент неравномерности поляризационной характеристики в направлении оси спирали равен:

Если данные антенны подобраны в соответствии с формулой (5.2) или (5.4), то хорошие направленные свойства сохраняются в значительном диапазоне, лежащем примерно в пределах от 0.75 до 1.3, где - волна, для которой подобрано оптимальное соотношение между L, C/V1, n и S.

Расчет антенны:

Исходные данные к расчету антенны

Рабочий диапазон длин волн: min=0.48 m

Ширина диаграммы направленности по уровню половинной мощности - 40 градусов

Расчет геометрических размеров антенны

Выберем среднее значение длины волны из заданного диапазона:

На основании экспериментальных исследований были получены следующие эмпирические формулы, справедливые для 5

Ширина диаграммы направленности по половинной мощности, выраженная в градусах:

Коэффициент направленного действия(КНД) в направлении ее оси:

Входное сопротивление

Шаг спирали можно найти из условия (5.2), если необходимо получить круговую поляризацию, либо из (5.4), для получения максимального КНД.

Пусть нам необходима круговая поляризация, тогда

шаг спирали равен

Удовлетворяет условию 12 0 <<15 0 , значит мы можем применить формулы, полученные на основании экспериментальных исследований:

Для нахождения длины антенны, выразим l=nS из (5.7) при удовлетворении условия (5.9):

А значит число витков равно:

Для дальнейших расчетов округлим число n до целого: n=8, тогда

l=nS=0.986м(5.14)

Радиус спирали будет равен (см.рис.5.1):отсюда

Входное сопротивление антенны в режиме осевого излучения остается чисто активным, так как в этом режиме в проводе спирали устанавливается режим бегущей волны.

Пусть нам необходимо получить максимальный КНД, тогда

Чтобы излучение антенны было осевым примем длину витка спирали равной средней длине волны заданного диапазона:

шаг спирали равен

Угол намотки витков будет равен:

Удовлетворяет условию 12 0 <<15 0 , значит мы можем применить формулы, полученные на основании экспериментальных исследований:

Для нахождения длины антенны, выразим l=nS из (5.7) при удовлетворении условия (5.18):

А значит число витков равно:

Для дальнейших расчетов округлим число n до целого: n=6, тогда

l=nS=0.846м(5.23)

Радиус спирали будет равен:

Длина провода для намотки спирали будет равна:

Коэффициент направленного действия:

Входное сопротивление

Для обоих случаев:

Диаметр диска экрана принимается равным (0.9-1.1) ср

Диаметр провода спирали выбирается порядка (0.03-0.05) ср

Расчет диаграммы направленности:

Приближенно можно считать, что амплитуда бегущей волны в спирали постоянна. Тогда диаграмма направленности антенны может быть представлена произведением диаграммы направленности одиночного витка на диаграмму направленности решетки из n ненаправленных излучателей, где n - число витков:

где - угол относительно оси спирали.

Это приближение справедливо тем больше, чем больше витков n имеет спираль и чем меньше шаговый угол.

Диаграмма направленности одиночного витка приближенно описывается выражением

Множитель решетки, как известно, равен

Применительно к спиральной антенне

сдвиг фаз между токами соседних витков. Учитывая, что С/V1=1.22, для расчета диаграммы направленности цилиндрической спиральной антенны получим следущее приближенное выражение:

В итоге при получении максимального КНД, будем иметь диаграммы направленности для трех значений длин волн: min , ср, мах:

При получении круговой поляризации, будем иметь диаграммы направленности для трех значений длин волн: min, ср, мах:

Согласование антенны с коаксиалом(Zв=75 ом)

Согласовать антенну с коаксиалом можно несколькими способами:

Согласование четвертьволновым трансформатором:

Согласование антенны с входным сопротивлением Z3=120 Ом с коаксиалом Z1=75 Ом осуществляют куском коаксиала с =95 Ом, длиной L==0.14м, а антенны с входным сопротивлением Z3=154 Ом с коаксиалом с =110 Ом

Согласование коаксиальной конической линией

Согласование осуществляют неотражающими конусами, длиною в целое число полуволн, путем выполнения проводников в виде соответствующих линейных конусов. Причем чем больше длина согласующего звена(укладывается больше полуволн), лучше будет осуществляться согласование с антенной.

6. Выводы по проделанной работе

спиральный антенна излучение поляризация

В процессе выполнения курсового проекта был проведен расчет однозаходной цилиндрической спиральной антенны: геометрические размеры антенны и характеристики излучения антенны. Так как в основе работы спиральной антенны лежит круговая поляризация, то данный тип антенн относят к широкодиапазонным антеннам. Ниже приведены полученные результаты:

шаг спирали S = 0.053 м;

длина витка спирали = 0.192 м;

радиус спирали = 0.03 м;

длина спирали Lz = 0.567 м;

коэффициент направленного действия D = 30 дБ;

входное сопротивление антенны Rвх = 31.7 Ом;

число витков спирали N = 6 ;

угол намотки витка спирали = 16 градусов;

диаметр диска антенны = 0.652 м;

рабочая длина волны = 0.175 м.

Список использованных источников

Айзенберг Г.З., Ямпольский В.Г., Терешин О.Н. Антенны УКВ.- М.: Связь, 1971. В 2-х частях.

Жук М.С., Молочков Ю.Б. Проектирование линзовых, сканирующих, широкодиапазонных антенн и фидерных устройств. - М.: Энергия, 1973.- 440 с.

Воскресенский Д.И. Расчет и проектирование антенных решеток и их излучающих элементов

Юрцев О.А.,... Спиральные антенны. - М.: Советское радио, 1974. - 224 с.

"Линии передачи сантиметровых волн", ч.I-II. Пер. с англ., под ред. Г.А.Ремеза. Изд-во "Сов.радио", 1961

3.1. В процес­се развития радиотехники все больше требуются антенно-фидерные устройства, рассчитанные на работу в очень широком диапазоне ча­стот и притом без всякой перестройки. Частотная независимость таких антенно-фидерных устройств основана на принципе электродинамиче­ского подобия.

Этот принцип состоит в том, что основные параметры антенны (ДН и входное сопротивление) остаются неизменными, если изменение дли­ны волны сопровождается прямо пропорциональным изменением ли­нейных размеров активной области антенны. При соблюдении данного условия антенна может быть ча­стотно-независимой в неограничен­ном диапазоне волн. Однако разме­ры излучающей структуры конеч­ны и рабочий диапазон волн лю­бой антенны тоже ограничен.

Из этой группы антенн рассмот­рим плоские арифметические и равноугольные спирали и логариф­мически-периодические антенны.

Рис.4.

3.2. Арифметическая спираль вы­полняется в виде плоских металли­ческих лент или щелей в металли­ческом экране (рис. 4). Уравне­ние этой спирали в полярных координатах

где - радиус-вектор, отсчитываемый от полюса О; а - коэффициент, характеризующий приращение радиус-вектора на каждую единицу приращения полярного угла; b - начальное значение радиус- вектора.

Спираль может быть двухзаходной, четырёхзаходной и т. д. Если спираль двухзаходная, то для ленты (щели) /, показанной штриховы­ми линиями, угол отсчитывается от нуля, а для ленты //, показанной сплошными линиями, - от 180°, т. е. спираль образована совершенно идентичными лентами, повернутыми на 180° друг относительно друга.

Начальные точки ленты / соответствуют радиус-векторам, которые обозначим и. Следовательно, ширина ленты. Описав один оборот, лента занимает поло­жение D, в котором радиус-вектор больше начального на. На этом отрезке ВD размещаются две ленты и два зазора, и если ширина их одинаковая, то, Отсюда определяем коэффициент.

3.3. Питание спирали может быть противофазным, как на рис. 4, или синфазным. В первом случае токи через зажимы А, В, соединяю­щие ленты с фидером, имеют противоположные фазы. Путь тока в лен­те / больше, чем в ленте //, на полвитка. Например, в сечении СD лента // попадает, описав полвитка, а лента / - один виток, в сечение ЕF-соответственно полтора и два витка и т. д. Поскольку длина витка по мере развертывания спирали возрастает, увеличивается рас­хождение фазы токов в лентах. Обозначив средний диаметр витка находим сдвиг по фазе, соответствующий длине полувитка:

Если к этому прибавить начальный сдвиг, равный, то получим результирующее расхождение по фазе токов в смежных элементах двухпроводной линии

За счет второго слагаемого угол отличен от, а в таких условиях электромагнитные волны излучаются, даже если зазор между лентами мал по сравнению с длиной волны.

Интенсивно излучает только та часть спирали, в которой токи смеж­ных элементов обеих лент совпадают по фазе:

Подставляя, находим, что средний диаметр первого «резонанс­ного» кольца, а периметр этого кольца.Сред­ний диаметр и периметр второго (k=2 ), третьего (k=3 ) и т. д. «ре­зонансных» колец соответственно в три, пять, ... раз больше. Так как излучение радиоволн спиралью вызывает большое затухание тока от ее начала к концу, то интенсивно излучает только первое резонансное кольцо , а остальная, внешняя часть спирали как бы «отсекается» {явление отсечки излучающих токов}.

3.4. Активная часть спирали представляет наибольший интерес и по другой причине. Затухание тока, вызванное излучением, настолько велико, что отражение от конца спирали практически отсутствует, т. е. ток в спирали распределяется по закону бегущих волн. К тому же пе­риметр первого резонансного кольца равен длине волны. В таких условиях, как показано в п. 1, происходит осевое излучение с вращаю­щейся поляризацией, которое в данном случае наиболее желательно.

Диаметр спирали должен быть достаточно велик, чтобы на макси­мальной волне диапазона сохранилось первое «резонансное» кольцо (),а с уменьшением длины волны это кольцо долж­но сжиматься до тех пор () , пока оно еще может полностью разме­ститься вокруг узла питания. Тогда в пределах отноше­ние среднего периметра первого «резонансного» кольца к длине волны остается постоянным и тем самым выполняется основное условие сохранения направленных свойств антенны в широком диапазоне волн Правда, направленность арифметической спирали невелика (60 ... 80°), поскольку в излучении волн участвует, по существу, только та часть спирали, которая имеет средний пери­метр, равный.

Второе условие получения диапазонной антенны-постоянство входного сопротивления - достигается здесь тем, что спираль ра­ботает в режиме бегущей волны тока. Это сопротивление активное (100-200 Ом). При питании от коаксиального фидера (Ом) согласование производят ступенчатым или плавным трансформатором.

3.5. Спираль излучает по обе стороны своей оси. Чтобы сделать ан­тенну однонаправленной, ленточную спираль помещают на диэлектри­ческой пластине толщиной, другую сторону которой металлизи­руют. Если же спираль щелевая, то ее вырезают на стенке металличе­ского короба; тогда противоположная стенка короба играет роль отра­жающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.

Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пла­стине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн 7.5 ... 15 см при, ширине диаграммы направлен­ности 2" = 60... 80° и коэффициенте эллиптично­сти в направлении макси­мума главного лепестка менее 3 дБ, т. е. практиче­ски поляризацию можно считать круговой. Плоские спиральные антенны удоб­но изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.

Этот комментарий, который я приведу ниже по тексту, решил выделить отдельной статьёй. У его автора получилась спиральная антенна, которая в наихудших условиях приёма обеспечила работу одновременно двум телевизорам, причём без усилителей и разветвителей. Он назвал свою конструкцию БИСПИРАЛЬНОЙ, хотя такое название уже сочетается с двойной спиральной и с двух спиральной антеннами, которые представлены в разных вариантах и в разных функциональных назначениях. Однако из приведённого примера, вы поймете, что это нечто другое, которому ещё необходимо придумать название.

БИСПИРАЛЬНАЯ
Продавец отговаривал от покупки приёмника DVB –T2: «Принесёшь обратно – не ловится у нас!» Между источником и моим городом 35 км. Расстояние не угрожающее, но поперёк устроены три линии ЛЭП-500, ЛЭП-750 – источники помех. Кроме этого, прямой сигнал загорожен возвышенностью с плотной застройкой 16-тиэтажками. 31-й (551 МГц) и 51-й (714 МГц) частотные каналы.
Первой была изготовлена и испытана двух кольцевая антенна. Она помогла нащупать единственный вариант направления приёма, показала «проблески» ТВ-сигнала, отражённого под острым углом от девятиэтажного дома, стоящего в полу километре .

Изготовил 7-витковую спиральную антенну, рассчитанную на 31-й канал. Основой каркаса служат 4 отрезка полипропиленовой водопроводной трубы (малый тангенс!), для квадратной спирали – одиночный медный многожильный провод сечением 4 кв. мм в виниловой изоляции, пятиметровый кабель. Результат вполне устроил, уверенный приём обоих пакетов. Пробовал сделать подобную антенну по размерам 51-го канала (714 МГц), результат – 31 канал она «не ловит». Отсюда сделал вывод: расчёт спиральной антенны следует выполнять на низкочастотный канал. Вывод номер два: широкополосность спиральной антенны обусловлена её конструкцией (так утверждает Карл Ротхаммель), а не диаметром намотанного провода.
Всё было замечательно до той поры, когда жена попросила устроить ей телевизор ещё и на кухне. Серьёзное расстояние (плюс 13 метров) передачи высокочастотного сигнала – это проблема. Использование краба, а также включение приёмников «цугом» не привело к результату. Испытал три модели усилителей SWA, с лучшим из них интенсивность сигнала подрастала с 70 до 90, но качества на дальнем не было совсем! По отдельности приёмники с этой антенной обеспечивали уверенный приём обоих пакетов.

Строить вторую антенну – загромождать балкон….
Решение пришло. Что если на этом же каркасе устроить вторую спираль, поместив витки между витками первой? Сказано-сделано, доработка была выполнена в 1,5 часа. Результат замечательный! Для второй спирали я использовал провод с посеребренной экранной обмоткой. Интенсивность и качество сигналов на дальнем (!) приёмнике подросли на 15 пунктов. Не замечено влияния приёмников друг на друга с такой антенной.
Известно, что при сложении сигналов от двух спиралей интенсивность сигнала удваивается. Соединять спирали я не пробовал, а было бы интересно. Любопытно также попробовать четыре спирали на общем каркасе…
Надеюсь, что эта информация окажется полезной пытливым и рукастым!

P.S. если была бы кнопка «вставить изображение» - приложил бы фото.

Ну, а теперь – мой выход.

Трудно не согласиться, что очень нужная информация. Остаётся только сожалеть, что ресурс этого блога не обеспечивает сопровождение комментарий фотографиями. Да и сам этот комментарий не сразу проявился, а нашёл я его случайно в кулуарах блога и втиснул в нужное место только спустя две недели.

Сразу по ходу комментария просто уточню, что при сложении двух спиралей, как и других антенн, обладающих направленными свойствами, их общий коэффициент усиления увеличивается только на 3 дБ, если отсчёт усиления этих антенн идёт от полуволнового вибратора (по крайней мере так утверждает автор двухтомника «Антенны» Карл Ротхаммель и «Справочник радиолюбителя конструктора» под общей редакцией Р. М. Малинина).

Опыт автора приложенного комментария практически доказывает, что чем хуже условия распространения радиоволн, тем сильнее сказывается преимущество круговой поляризации, которой обладают спиральные антенны, и даже с учётом потерь в 3 дБ в случае приёма сигнала от телевизионного передатчика с горизонтальной поляризацией.

Теперь же необходимо придумать название этой самодельной антенны, которую испытал автор. Чтобы не запутаться в терминологии спиральных антенн я решил поинтересоваться уже известными названиями, и, таким образом, получилась

Отмечу также, что из всего многообразия антенн только спиральные лидируют по количеству геометрических форм и соответствующих им названий, а что касается двух и более спиралей, то варианты названий пропорционально увеличиваются.

Спиральная антенна с горизонтальной поляризацией.

Это две спирали, с противоположным шагом намотки, расположенные параллельно друг другу в горизонтальной плоскости, с одним общим отражателем, с рекомендованным расстоянием между осями равным 1,5 величины длины волны. Если спирали расположены в горизонтальной плоскости, то они обладают горизонтальной поляризацией, если в одной плоскости друг над другом, то поляризация вертикальная. Две спирали по шесть витков дают усиление 14 дБ, если сравнивать с полуволновым вибратором (напомню, что 6 витков согласно таблице этого же издания – это 11 дБ). Перед одиночной спиралью с волновым сопротивлением 120 Ом сдвоенные спирали обладают преимуществом, так как их общее сопротивление 60 Ом, и они проще согласуется с коаксиальным кабелем 50 или 75 Ом. При однотипной укладке спиралей поляризация будет круговой.

Реже используется конструкция спиральной антенны с горизонтальной поляризацией, где две спирали с разным направлением намотки соединяются по одной оси.

Двойная спиральная антенна.

В том же двухтомнике (особые типы антенн для УКВ и ДМВ диапазонов, глава 26. 8.) существует ещё один термин «двойная спиральная антенна », на самом деле это антенна по свойствам сравнима с четвертьволновым штырём, где последний выполнен в виде спирали, а функцию противовеса выполняет спираль большего диаметра.

Этот тип антенн хорошо подходит для дальнего приёма эфирного телевизионного цифрового сигнала. Подкупает простота изделия, всего две основные детали: отражатель из снегоуборочной лопаты и спираль из мотка силового провода. Ни одного паяного соединения, всё на винтах и скрутке. Нет сложных согласующих элементов. Тем не менее, коэффициент усиления конструкции достигает более 10 дБ, что позволяет использовать её в некоторых случаях без усилителя. Именно на эту антенну без усилителя я принял за городом цифровой телевизионный сигнал.


Хочу напомнить, что любая дециметровая антенна годится для цифрового канала вещания, разница будет только в дальности приёма. Но не всякая антенна обеспечит максимальный коэффициент усиления и согласования именно на нужной частоте. Какая бы сложная антенна не была, она имеет провалы и пики усиления во всём своём диапазоне принимаемых частот.

Именно спиральные антенны следили за полётом первого космонавта Юрия Гагарина.Когда первые советские луноходы, ориентируя спирали, бороздили поверхность Луны, я мечтал сделать такую же космическую антенну.


Фото 2.

Нет ничего хуже незавершенных дел. За основу выбираю самую простую из всех типов спиральных антенн. Это однозаходная, спиральная, цилиндрическая (бывает ещё коническая), регулярная, то есть с постоянным шагом намотки или одинаковым расстоянием между витками. Таким образом, уже название антенны говорит о её конструкции. Именно такую конструкцию впервые предложилKraus J .D .

«Helical beam antenna ». – «Electronics », 1947 год. V 20, N 4. Р. 109.

Рекомендую для радиолюбителей лучшую настольную книгу «Антенны», издание 11, том 2. Автор Карл Ротхаммель. В книге собрано много практического материала почти всем видам антенн. Характеристики, параметры, практические расчёты, рекомендации.

Из этого издания я привожу характеристики спиральной антенны.


Рис. 1.

Необходимо узнать на какой частоте в вашем регионе идёт цифровое вещание и значение этой частоты перевести в метры. Длина волны в метрах = 300 / F (частота в МГц).

Для московских частот вещания двух цифровых пакетов, я выбрал среднюю частоту 522 МГц, что соответствует длине волны лямбда 57 см. В этом случае диаметр витка равен D = 17,7 см, расстояние между витками 13,7 см, расстояние от экрана до витка 7,4 см, а ширина экрана должна уложиться в 35 см.

В качестве экрана (отражателя) мне потребовалась неправильная снегоуборочная лопата из красивой блестящей нержавейки, постоянно гнущейся под тяжестью снега. Практика показывает, что отражатель не обязательно должен быть круглым, а делать сторону квадрата более двух диаметров витка спирали нет смысла.Спираль я сделал из сетевого силового провода диаметром около 2 мм, используя одну изего жил, не снимая с неё изоляцию, так как она прозрачна для радиоволн, а медная проволока не окисляется в ней под воздействием внешней среды. На практике толщина провода оказалась почти в 5 раз меньше теоретической, вот почему диапазон антенны получился узким. В дециметровом диапазоне антенна примет хорошо только несколько телевизионных станций аналогового вещания, тем не менее, два цифровых пакета, распложённых рядом по частоте вполне уместятся в полосе её усиления. Ещё потребуется 75-Омный коаксиальный кабель с разъёмом. Не рекомендую сильно увлекаться длиной кабеля, особенно если антенна без усилителя, так как в его каждом метре теряется от 0,5 до 1 дБ усиления и длинному кабелю потребуется согласующее устройство. В своей конструкции я использовал 3-и метра кабеля.


Рис. 2.

Всего-то дел, намотать спираль, подсоединить к проводнику спирали кабель и прикрепить всё это к полотну лопаты. Но диэлектрического цилиндра нужного диаметра для фиксации провода спирали у меня не оказалось, и поэтому в качестве каркаса я использовал рейки и лист сухой фанеры, перенеся на неё размеры антенны с эскиза. Было бы круче, если бы использовались черенки от лопат вместо реек и фанеры, но я собирал только макет, и мне было удобно сделать всё на фанере. Когда обечайка стала обволакиваться проводом, самоделка была похожа на корпус летательного аппарата. Со стороны это выглядело менее безобидно, если бы я стал гнуть витки из медной трубки, как хотел раньше. Как я уже говорил, такую антенну удобно спрятать под конёк дома с крышей из мягкой кровли, андулина или шифера, прозрачной для радиоволн.


Фото 3. Испытание макета антенны.

Для проверки антенны я использовал комнату мансарды, где с помощью лестницы приподнял самоделку поближе к потолку. В этом месте раньше работала фазированная рамка с усилителем 35 дБ и с трудом покупная комнатная антенна с усилителем 30 дБ. Место испытание тоже. Владимирская область, 90 км на восток от Останкино. Теперь здесь работает спиральная антенна без усилителя. Она «видит» телецентр через: вагонку, пергамин, 10 см базальтовой ваты, доску обрешётки, фанеру OSB , подстилочный ковёр, чешую мягкой кровли и сгусток гвоздей разной длины.Остаётся закрепить её ещё выше, под конёк дома или разобрать, ведь это всего только макет.


Фото 5. Размер и шаг предыдущих
конструкций антенн почти совпадают.

Для улучшения параметров антенны не помешает применить согласующее устройство – трансформатор, обеспечивающий переход с сопротивления антенны равного 180 Ом на коаксиальный кабель с сопротивлением 75 Ом. Это пластинка из тонкой меди в виде треугольника, расширяющегося к экрану. Место крепления пластинки и её размеры я подобрал экспериментальным путём, применив две пластмассовые прищепки. В домашних условиях это легко сделать с помощью телевизора, спустив антенну на более низкий уровень, при котором изображение будет «заснеженным». Необходимо двигать, поворачивая пластинку, и на слух, по уменьшению уровня шума в аудио канале при приёме аналогового сигнала, близкого по частоте к цифровому пакету, определить её местоположение. После чего запаять.

Несмотря на нелепость формы у этой антенны есть преимущество. Она без усилителя, который после разрядов молний часто вылетает. На практике два раза усилители выходили из строя во время грозы у наружных антенн, расположенных в 30-и метрах от столба воздушной электропроводки, в который попадали молнии. У антенны расположенной под крышей дома, в шести метрах от столба-разрядника, случаи выхода усилителя из строя не зарегистрированы.

Может выйти из строя блок питания самого усилителя, так как он, как правило, всегда под напряжением и ресурс его ограничен.

Ещё одно преимущество в том, что дальность этой антенны с усилителем будет больше, на сколько, проверьте сами.

Дополнение. Изменение конструкции антенны.

В этом году (2015) я решил доработать самодельную конструкцию спиральной антенны, используя вместо провода металлопластиковую трубку (металлопласт) диаметром 16 мм. Ранее собранные антенны уже прошли аналогичную операцию и заметно оживились. Претерпела оздоровление и спиральная антенна, но не обольщайтесь, прирост уровня сигнала составил только 10 процентов, а качество сигнала осталось на том же стопроцентном уровне.

Фото 7. Старая антенна.
Фото 8. Изменение конструкции.

Давно хотел сделать антенну, используя в качестве материала трубку. Останавливала схожесть с самогонным аппаратом и высокая себестоимость. Но вот материал найден и уже испытан на простых антеннах. Это легко гнущаяся трубка из высококачественного алюминия, обтянутого со всех сторон пластиком, продаётся на всех строительных рынках для прокладки водопровода.

Фото 10. Новая конструкция.
Фото 9. Банка - оправка.

Экономический

расчёт антенны.

Этот сложный расчёт мне пришлось проделать, зайдя в магазин «Всё для дома», на самой окраине Подмосковья и увидев металлопласт по цене 45 руб. Длина волны, частоты вещания, длина круга, число витков, усиление антенны….

4 метра выпалил я на кассе, подведя итог экономической части проекта. Себестоимость антенны не должна превысить минимальную акцизную стоимость бутылки водки.

Расчёт антенны.

Чисто по экономическим соображениям получилось 6,5 витков, на полвитка меньше предыдущей проволочной самоделки. Так же между витками я взял расстояние равное четвёртой части длины волны. Аналогичным образом подсчитал длину одного витка, но по практическим соображениям, уже имея опыт по изготовлению простых петлевых антенн, скорректировал зависимость металлопласта от частоты, сократил длину витка на 1,5 см. Так же подсчитал диаметр оправки, поделив скорректированную длину витка на 3,14. С учётом толщины трубки диаметр оправки взял на 8 мм меньше.

Регулировка.

Она заключалась в измерении КСВ (коэффициента стоячей волны) самодельным КСВ-метром . Первоначально я измерил старую самоделку. Странно, но прибор заявлял об отличном согласовании с 50 Ом нагрузкой (КСВ = 1,5). С доработанной антенной тоже всё совпало, правда, при запитке с края полотна. Но конструктивно, уже впоследствии, я задействовал кабель по центру и КСВ упал до 2. Очень полезным оказался простенький самодельный КСВ-метр, совмещённый с самодельным генератором, настроенным на цифровые частоты вещания. С его помощью я смог не только определить КСВ антенны, но и проверить её работоспособность, когда каждый виток реагировал на подносимую крышку от кастрюльки качанием стрелки микроамперметра.

Итоги.

Изменение конструкции добавило прирост усиления на 10 процентов, и это при том, что в антенне на пол витка меньше. В целом она принимает программы в дециметровом диапазоне, работая в аналоговом режиме, не хуже антенны типа «волновой канал» (Уда – Яги), включающей в себя 12 директоров и усилитель с заявленным усилением не менее 26 дБ. Обе антенны расположены в одинаковых условиях на одном уровне от земли. Разница лишь в том, что работа покупной антенны, при приёме эфирного цифрового сигнала, зависит от погоды и времени дня, симулируя ухудшение прохождения радиоволн характерным крякающим звуком и зависанием телевизионных картинок, а то и полным отсутствием изображения. Радиоприём с самодельной антенной всегда постоянен.

Но в целом я остался недоволен данной конструкцией, поскольку ожидал от неё нечто большего, исключительно исходя из её габаритов и затраченных средств. Сравнивая эту спиральную антенну с предыдущей конструкцией самодельной антенной для приёма эфирного цифрового телевидения , состоящую всего из двух фазируемых колец идентичного диаметра, сделанную из того же материала, я не нашёл существенного выигрыша, сравнивая их по уровням приёма.

Два фазированных кольца и шесть закрученных в спираль, дают усиление в теории 6 дБ и 10 дБ. Два кольца на открытом воздухе и 6,5 колец под крышей, на одинаковом уровне от земли и при практическом одинаковом уровне усиления в процентах. Может крыша и съела разницу в 4 дБ, а может реально трудно заметить эту разницу? В тоже время не выставлять же этот змеевик на улицу, открывая этим тему для лишних разговоров.

Упал ли я духом? Нет! Радиолюбительство - источник удовольствия. Займитесь радиолюбительством, ведь это интересно. Возможно, результат у вас будет лучшим.


Скорее всего, я ещё вернусь к этой спиральной антенне, ведь не заснула же она, кода антенна «волновой канал» перестала принимать эфир.